2y^2+7=61-y^2

Simple and best practice solution for 2y^2+7=61-y^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y^2+7=61-y^2 equation:



2y^2+7=61-y^2
We move all terms to the left:
2y^2+7-(61-y^2)=0
We get rid of parentheses
2y^2+y^2-61+7=0
We add all the numbers together, and all the variables
3y^2-54=0
a = 3; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·3·(-54)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*3}=\frac{0-18\sqrt{2}}{6} =-\frac{18\sqrt{2}}{6} =-3\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*3}=\frac{0+18\sqrt{2}}{6} =\frac{18\sqrt{2}}{6} =3\sqrt{2} $

See similar equations:

| -9=q-4.8= | | -35=-2c+9c | | c(3)=c(3-1)-16 | | 17=-8-5w | | 1/3(x+9=8 | | 4(3-5x)=172 | | 0=4(3+x) | | x*(x-1)=812 | | 25-7x=20-2x | | 3x+9=36x-73 | | 5n-n=1 | | 5*10^(2x)+1=21 | | 2.7x=16.2 | | 35=3h-7h | | 19/y=8 | | x²=10x-24 | | 4.8x-1.3=1.7 | | -2(4x=2)-(x+4)=1 | | 1/2-3x=7/8 | | 8/17y-32=0 | | —3(5-9v)=25+7v | | 7–f=20 | | -9-5x=-15-2x | | c=44c=7.8= | | 10x+45=x-27 | | 7c+3=52,c= | | n*$5.06=506.00 | | X/9=4-9x | | (1÷4)(x-(4÷5))=-(39÷29) | | 3^(z)=9^(z+3) | | -3b+2-8=-17 | | 7x-60=4x+15 |

Equations solver categories